Aberrant let7a/HMGA2 signaling activity with unique clinical phenotype in JAK2-mutated myeloproliferative neoplasms
نویسندگان
چکیده
High mobility group AT-hook 2 (HMGA2) is an architectural transcription factor that is negatively regulated by let-7 microRNA through binding to it's 3'-untranslated region. Transgenic mice expressing Hmga2 with a truncation of its 3'-untranslated region has been shown to exhibit a myeloproliferative phenotype. To decipher the let-7-HMGA2 axis in myeloproliferative neoplasms, we employed an in vitro model supplemented with clinical correlation. Ba/F3 cells with inducible JAK2V617F expression (Ton.JAK2.V617F cells) showed upregulation of HMGA2 with concurrent let-7a repression. Ton.JAK2.V617F cells treated with a let-7a inhibitor exhibited further escalation of Hmga2 expression, while a let-7a mimic diminished the Hmga2 transcript level. Hmga2 overexpression conferred JAK2-mutated cells with a survival advantage through inhibited apoptosis. A pan-JAK inhibitor, INC424, increased the expression of let-7a, downregulated the level of Hmga2, and led to increased apoptosis in Ton.JAK2.V617F cells in a dose-dependent manner. In samples from 151 patients with myeloproliferative neoplasms, there was a modest inverse correlation between the expression levels of let-7a and HMGA2 Overexpression of HMGA2 was detected in 29 (19.2%) of the cases, and it was more commonly seen in patients with essential thrombocythemia than in those with polycythemia vera (26.9% vs 12.7%, P=0.044). Patients with upregulated HMGA2 showed an increased propensity for developing major thrombotic events, and they were more likely to harbor one of the 3 driver myeloproliferative neoplasm mutations in JAK2, MPL and CALR Our findings suggest that, in a subset of myeloproliferative neoplasm patients, the let-7-HMGA2 axis plays a prominent role in the pathogenesis of the disease that leads to unique clinical phenotypes.
منابع مشابه
[JAK2 inhibitors in the treatment of myeloproliferative neoplasms].
INTRODUCTION Dysregulation of JAK-STAT signaling is a pathogenetic hallmark of myeloproliferative neoplasms (MPNs) arising from several distinct molecular aberrations, including mutations in JAK2, the thrombopoietin receptor (MPL), mutations in negative regulators of JAK-STAT signaling, such as lymphocyte-specific adapter protein (SH2B3), and epigenetic dysregulation as seen with Suppressor of ...
متن کاملLoss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis
Myeloproliferative neoplasm (MPN) patients frequently show co-occurrence of JAK2-V617F and mutations in epigenetic regulator genes, including EZH2 In this study, we show that JAK2-V617F and loss of Ezh2 in hematopoietic cells contribute synergistically to the development of MPN. The MPN phenotype induced by JAK2-V617F was accentuated in JAK2-V617F;Ezh2(-/-) mice, resulting in very high platelet...
متن کاملMyeloproliferative Neoplasms Associated with Mutation in JAK2V617F and Tyrosine Kinase Inhibitors as Therapeutic Strategy
MPNs including a heterogeneous group of clonal or oligoclonal hamtopathies characterized by proliferation and accumulation of mature myeloid cells. JAK2 tyrosine kinase mutation is the most common molecular lesion identified in 90% of cases. JAK2 is involved in EPO signaling pathway, and mutations in it lead to EPO-independent spontaneous phosphorylation. Most tyrosine kinase inhibitors (TKI) a...
متن کاملIncreased basal intracellular signaling patterns do not correlate with JAK2 genotype in human myeloproliferative neoplasms.
Myeloproliferative neoplasms (MPNs) are associated with recurrent activating mutations of signaling proteins such as Janus kinase 2 (JAK2). However, the actual downstream signaling events and how these alter myeloid homeostasis are poorly understood. We developed an assay to measure basal levels of phosphorylated signaling intermediates by flow cytometry during myeloid differentiation in MPN pa...
متن کاملJAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes.
Patients with essential thrombocythemia may carry JAK2 (V617F), an MPL substitution, or a calreticulin gene (CALR) mutation. We studied biologic and clinical features of essential thrombocythemia according to JAK2 or CALR mutation status and in relation to those of polycythemia vera. The mutant allele burden was lower in JAK2-mutated than in CALR-mutated essential thrombocythemia. Patients with...
متن کامل